
Architecture of Enterprise Applications XII
Architectural Patterns –

Service Design and
State Management

Haopeng Chen

REliable, INtelligent and Scalable Systems Group (REINS)

Shanghai Jiao Tong University

Shanghai, China

e-mail: chen-hp@sjtu.edu.cn

REliable, INtelligent & Scalable Systems

Service Design and State Management

• System Requirements

– E-learning

– To manage all kinds of teaching activities of one of the top universities,
including enrollment, courses selection, score management, assignment
management, and so on.

– This university has over 30,000 undergraduate students and graduate
students, and over 4,000 teachers.

– This university opens over 4,000 courses every semester.

– We should keep all data for a long period.

– It should be integrated with other e-campus systems, such as Financial
System, Research Projects Management Systems.

REliable, INtelligent & Scalable Systems

Stateful or Stateless

• Services are stateful or stateless?

– Up to 30,000 users

– Stateful

• Have to maintain states for each user

• Maintain the states between requests

– Stateless

• Multiple users share the same instance of service

• Can not maintain the states between requests

– Prefer stateless services to stateful services

REliable, INtelligent & Scalable Systems

Stateful or Stateless

• Services are stateful or stateless?

– How to hold the personal information about authentication

and authority ?

• We have to use stateful services

– What should we design if all of the services need personal

information?

• Mediator Pattern

REliable, INtelligent & Scalable Systems

Synchronous or Asynchronous?

• How to communicate with services?

– Synchronous

• RPC

• Programming is simple, but performance maybe low

– Asynchronous

• Messaging

• Programming is complex, but performance is improved

– Which kind of mechanism should we use if the jitter of

concurrent users is great?

• Asynchronous is better

REliable, INtelligent & Scalable Systems

Synchronous or Asynchronous?

• How to communicate with services?

– How can we get the response of asynchronous service?

• Messaging again

• Call backs

– Can asynchronous service always improve the performance

and shorten response time?

• It COULD be

• When the number of requests is always great, and its jitter is not

great, messaging can not bring any improvement on performance

REliable, INtelligent & Scalable Systems

Granularity of Services

• Coarse-grained or Fine-grained?

– Coarse-grained

• Decrease the number of invocations between client and service

• Encapsulate the business logic

• Weaken the control on business flow

• Make it simple to write client program

– Fine-grained

• Have more control on transaction, security, and so on

• Increase the number of invocations between client and service

• Need clients to implement business flow

• The performance can be very low when the services are remote for client

REliable, INtelligent & Scalable Systems

Remote Facade

• Provides a coarse-grained facade on fine-grained objects to
improve efficiency over a network.

• Any inter-process call is orders of magnitude more expensive than

an in-process call.
• A Remote Facade is a coarse-grained facade over a web of fine-

grained objects.

REliable, INtelligent & Scalable Systems

Remote Facade-How It Works

• Remote Facade tackles the distribution problem which the
standard OO approach of separating distinct responsibilities into
different objects; and as a result it has become the standard
pattern for this problem.
– the facade is merely a thin skin that switches from a coarse-grained to

a fine-grained interface.

REliable, INtelligent & Scalable Systems

Remote Facade-How It Works

• In a more complex case a single Remote Facade may act as a
remote gateway for many fine-grained objects.
– For example, an order facade may be used to get and update

information for an order, all its order lines, and maybe some customer
data as well.

• Granularity is one of the most tricky issues with Remote Facade.
– The facade is designed to make life simpler for external users, not for

the internal system.

• Remote Facade can be stateful or stateless.

REliable, INtelligent & Scalable Systems

Remote Facade-How It Works

• As well as providing a coarse-grained interface, several other
responsibilities can be added to a Remote Facade.
– For example, its methods are a natural point at which to apply security.

An access control list can say which users can invoke calls on which
methods.

– The Remote Facade methods also are a natural point at which to apply
transactional control.

REliable, INtelligent & Scalable Systems

Remote Facade-How It Works

• Remote Facade and Session Façade
– There‘s a crucial difference. Remote Facade is all about having

a thin remote skin，hence my diatribe against domain logic in
it.

– In contrast, most descriptions of Session Facade involve
putting logic in it, usually of a workflow kind.

– A large part of this is due to the common approach of using
J2EE session beans to wrap entity beans. Any coordination of
entity beans has to be done by another object since they can't
be re-entrant.

• Service Layer
– A concept familiar to facades is a Service Layer. The main

difference is that a service layer doesn't have to be remote and
thus doesn't need to have only fine-grained methods.

REliable, INtelligent & Scalable Systems

Remote Facade-When to Use It

• Use Remote Facade whenever you need remote access to a fine-
grained object model.

• Most often you run into this with different processes on different
machines, but it turns out that the cost of an inter-process call on
the same box is sufficiently large that you need a coarse-grained
interface for any inter-process communication regardless of where
the processes live.

• Remote Facades imply a synchronous--that is, a remote procedure
call--style of distribution.

REliable, INtelligent & Scalable Systems

Data Transfer Object

• An object that carries data between processes in order to reduce the number of
method calls.

• When you're working with a remote interface, each call to it is expensive.
• The solution is to create a Data Transfer Object that can hold all the data for the

call.
– It needs to be serializable to go across the connection.
– Usually an assembler is used on the server side to transfer data between the DTO

and any domain objects.

REliable, INtelligent & Scalable Systems

Data Transfer Object-How It Works

• Serializing the Data Transfer Object

• Other than simple getters and setters, the Data Transfer Object is also usually
responsible for serializing itself into some format that will go over the wire.
– Which format depends on what's on either side of the connection, what can run over

the connection itself, and how easy the serialization is.

• You have to choose a mechanism that both ends of the connection will work
with.
– If you control both ends, you pick the easiest one; if you don't, you may be able to

provide a connector at the end you don't own.
– Then you can use a simple Data Transfer Object on both sides of the connection and

use the connector to adapt to the foreign component.

• An important factor for serialization is the synchronization of the Data Transfer
Object on each side of the wire.
– In theory, whenever the server changes the definition of the Data Transfer Object,

the client updates as well but in practice this may not happen.

REliable, INtelligent & Scalable Systems

Data Transfer Object-How It Works

• Assembling a Data Transfer Object from Domain Objects

REliable, INtelligent & Scalable Systems

Data Transfer Object-When to Use It

• Use a Data Transfer Object whenever you need to transfer multiple items of
data between two processes in a single method call.

• There are some alternatives to Data Transfer Object.
– One is to not use an object at all but simply to use a setting method with many

arguments or a getting method with several pass-by reference arguments.
– Another alternative is to use a some form of string representation directly, without

an object acting as the interface to it.

• Another common purpose for a Data Transfer Object is to act as a common
source of data for various components in different layers.

REliable, INtelligent & Scalable Systems

Concurrency

• Since we use O/R mapping, and it is an offline way to access
database, we should manage the concurrent access to data.

• The core is how to prevent confliction between business
transactions.

• Locking is the solution
– What kind of lock?

REliable, INtelligent & Scalable Systems

Optimistic Offline Lock

• Prevents conflicts between
concurrent business transactions
by detecting a conflict and rolling
back the transaction.

• Often a business transaction
executes across a series of system
transactions.
– Once outside the confines of a

single system transaction, we
can't depend on our database
manager alone to ensure that the
business transaction will leave the
record data in a consistent state.

• Optimistic Offline Lock solves this
problem by validating that the
changes about to be committed by
one session don't conflict with the
changes of another session.

REliable, INtelligent & Scalable Systems

Optimistic Offline Lock-How It Works

• An Optimistic Offline Lock is obtained by validating that, in the time since a
session loaded a record, another session hasn't altered it.
– It can be acquired at any time but is valid only during the system transaction in

which it is obtained.
– Thus, in order that a business transaction not corrupt record data it must acquire an

Optimistic Offline Lock for each member of its change set during the system
transaction in which it applies changes to the database.

• The most common implementation is to associate a version number with each
record in your system.
– With an RDBMS data store the verification is a matter of adding the version number

to the criteria of any SQL statements used to update or delete a record.

• In addition to a version number for each record, storing information as to who
last modified a record and when can be quite useful when managing
concurrency conflicts.

• In an alternative implementation the where clause in the update includes every
field in the row.

REliable, INtelligent & Scalable Systems

Optimistic Offline Lock-When to Use It

• Optimistic concurrency management is appropriate when the
chance of conflict between any two business transactions is low.

• As optimistic locking is much easier to implement and not prone
to the same defects and runtime errors as a Pessimistic Offline
Lock, consider using it as the default approach to business
transaction conflict management in any system you build.

REliable, INtelligent & Scalable Systems

Optimistic Offline Lock-Example

class DomainObject...
 private Timestamp modified;
 private String modifiedBy;
 private int version;

table customer...
 create table customer(id bigint primary key, name varchar, createdby varchar, created

datetime, modifiedby varchar, modified datetime, version int)
SQL customer CRUD...
 INSERT INTO customer VALUES (?, ?, ?, ?, ?, ?, ?)
 SELECT * FROM customer WHERE id = ?
 UPDATE customer SET name = ?, modifiedBy = ?, modified = ?, version = ?
 WHERE id = ? and version = ?
 DELETE FROM customer WHERE id = ? and version = ?

REliable, INtelligent & Scalable Systems

Pessimistic Offline Lock

• Prevents conflicts between
concurrent business transactions
by allowing only one business
transaction at a time to access
data.

• Pessimistic Offline Lock prevents
conflicts by avoiding them
altogether.
– It forces a business transaction to

acquire a lock on a piece of data
before it starts to use it, so that,
most of the time, once you begin a
business transaction you can be
pretty sure you'll complete it
without being bounced by
concurrency control.

REliable, INtelligent & Scalable Systems

Pessimistic Offline Lock-How It Works

• You implement Pessimistic Offline Lock in three phases: determining what type of locks
you need, building a lock manager, and defining procedures for a business transaction to
use locks.

• Lock types:
– exclusive write lock
– exclusive read lock
– read/write lock

• Read and write locks are mutually exclusive.
• Concurrent read locks are acceptable.

• In choosing the correct lock type think about maximizing system concurrency, meeting
business needs, and minimizing code complexity.
– Also keep in mind that the locking strategy must be understood by domain modelers and

analysts.

• Once you've decided upon your lock type, define your lock manager. The lock manager's
job is to grant or deny any request by a business transaction to acquire or release a lock.
– The lock, whether implemented as an object or as SQL against a database table, should remain

private to the lock manager.
– Business transactions should interact only with the lock manager, never with a lock object.

REliable, INtelligent & Scalable Systems

Pessimistic Offline Lock-When to Use It

• Pessimistic Offline Lock is appropriate when the chance of conflict
between concurrent sessions is high. A user should never have to
throw away work.

• If you have to use Pessimistic Offline Lock, you should also
consider a long transaction.

• Don't use these techniques if your business transactions fit within
a single system transaction.

REliable, INtelligent & Scalable Systems

Pessimistic Offline Lock-Example

• Simple Lock Manager (Java)

interface ExclusiveReadLockManager...
 public static final ExclusiveReadLockManager INSTANCE = (ExclusiveReadLockManager)

Plugins.getPlugin(ExclusiveReadLockManager.class);
 public void acquireLock(Long lockable, String owner) throws ConcurrencyException;
 public void releaseLock(Long lockable, String owner);
 public void relaseAllLocks(String owner);

REliable, INtelligent & Scalable Systems

Pessimistic Offline Lock-Example

• We'll write a lock manager that interacts directly with a lock table in our
database rather than with a lock object.

table lock... create table lock(lockableid bigint primary key, ownerid bigint)

class ExclusiveReadLockManagerDBImpl implements ExclusiveLockManager...
 private static final String INSERT_SQL = "insert into lock values(?, ?)";
 private static final String DELETE_SINGLE_SQL = "delete from lock where

lockableid = ? and ownerid = ?";
 private static final String DELETE_ALL_SQL = "delete from lock where ownerid

= ?";
 private static final String CHECK_SQL = "select lockableid from lock where

lockableid = ? and ownerid = ?";

REliable, INtelligent & Scalable Systems

Pessimistic Offline Lock-Example

public void acquireLock(Long lockable, String owner) throws ConcurrencyException {
 if (!hasLock(lockable, owner)) {
 Connection conn = null;
 PreparedStatement pstmt = null;
 try {
 conn = ConnectionManager.INSTANCE.getConnection();
 pstmt = conn.prepareStatement(INSERT_SQL);
 pstmt.setLong(1, lockable.longValue());
 pstmt.setString(2, owner);
 pstmt.executeUpdate();
 } catch (SQLException sqlEx) { throw new ConcurrencyException("unable to lock " + lockable);
 } finally { closeDBResources(conn, pstmt); }
 }
 }
 public void releaseLock(Long lockable, String owner) {
 Connection conn = null;
 PreparedStatement pstmt = null;
 try {
 conn = ConnectionManager.INSTANCE.getConnection();
 pstmt = conn.prepareStatement(DELETE_SINGLE_SQL);
 pstmt.setLong(1, lockable.longValue());
 pstmt.setString(2, owner);
 pstmt.executeUpdate();
 } catch (SQLException sqlEx) { throw new SystemException("unexpected error releasing lock on " + lockable);
 } finally { closeDBResources(conn, pstmt); }
 }

REliable, INtelligent & Scalable Systems

Coarse-Grained Lock

• Locks a set of related objects with a single lock.

• A Coarse-Grained Lock is a single lock that covers many objects. It
not only simplifies the locking action itself but also frees you from
having to load all the members of a group in order to lock them.

REliable, INtelligent & Scalable Systems

Coarse-Grained Lock-How It Works

• The first step in implementing Coarse-Grained Lock is to create a
single point of contention for locking a group of objects.
– This makes only one lock necessary for locking the entire set.

– Then you provide the shortest path possible to finding that single lock
point in order to minimize the group members that must be identified and
possibly loaded into memory in the process of obtaining that lock.

REliable, INtelligent & Scalable Systems

Coarse-Grained Lock-How It Works

• With Optimistic Offline Lock, having each item in a group share a
version creates the single point of contention, which means
sharing the same version, not an equal version.
– Incrementing this version will lock the entire group with a shared lock.
– Set up your model to point every member of the group at the shared

version and you have certainly minimized the path to the point of
contention.

REliable, INtelligent & Scalable Systems

Coarse-Grained Lock-How It Works

• A shared Pessimistic Offline Lock requires that each member of
the group share some sort of lockable token, on which it must
then be acquired.
– As Pessimistic Offline Lock is often used as a complement to Optimistic

Offline Lock, a shared version object makes an excellent candidate for the
lockable token role.

REliable, INtelligent & Scalable Systems

Coarse-Grained Lock-How It Works

• Eric Evans and David Siegel define an aggregate as a cluster of
associated objects that we treat as a unit for data changes.
– Each aggregate has a root that provides the only access point to members

of the set and a boundary that defines what's included in the set.
– The aggregate's characteristics call for a Coarse-Grained Lock, since

working with any of its members requires locking all of them. Locking an
aggregate yields an alternative to a shared lock that I call a root lock.

– By definition locking the root locks all members of the aggregate. The root
lock gives us a single point of contention.

REliable, INtelligent & Scalable Systems

Coarse-Grained Lock-How It Works

• Using a root lock as a Coarse-Grained Lock makes it necessary to implement
navigation to the root in your object graph.

• The shared lock and root lock implementations of Coarse-Grained Lock both
have their trade-offs.
– When using a relational database the shared lock carries the burden that almost all

of your selects will require a join to the version table.
– But loading objects while navigating to the root can be a performance hit as well.
– The root lock and Pessimistic Offline Lock perhaps make an odd combination. By

the time you navigate to the root and lock it you may need to reload a few objects to
guarantee their freshness. And, as always, building a system against a legacy data
store will place numerous constraints on your implementation choice.

• Locking implementations abound, and the subtleties are even more numerous.
Be sure to arrive at an implementation that suits your needs.

REliable, INtelligent & Scalable Systems

Coarse-Grained Lock-When to Use It

• The most obvious reason to use a Coarse-Grained Lock is to
satisfy business requirements.
– This is the case when locking an aggregate.

– Consider a lease object that owns a collection of assets. It probably doesn't
make business sense for one user to edit the lease and another user to
simultaneously edit an asset. Locking either the asset or the lease ought to
result in the lease and all of its assets being locked.

• A very positive outcome of using Coarse-Grained Locks is that
acquiring and releasing lock is cheaper.
– This is certainly a legitimate motivation for using them.

– The shared lock can be used beyond the concept of the aggregate, but be
careful when working from nonfunctional requirements such as
performance.

– Beware of creating unnatural object relationships in order to facilitate
Coarse-Grained Lock.

REliable, INtelligent & Scalable Systems

Implicit Lock

• Allows framework or layer supertype code to acquire offline locks.

• Because offline concurrency management is difficult to test, errors might go
undetected by all of your test suites.

• One solution is to not allow developers to make such a mistake. Locking tasks
that cannot be overlooked should be handled not explicitly by developers but
implicitly by the application.

REliable, INtelligent & Scalable Systems

Implicit Lock-How It Works

• Implementing Implicit Lock is a matter of factoring your code such that any
locking mechanics that absolutely cannot be skipped can be carried out by your
application framework.

• The first step is to assemble a list of what tasks are mandatory for a business
transaction to work within your locking strategy.
– For Optimistic Offline Lock that list will contain items such as storing a version

count for each record, including the version in update SQL criteria, and storing an
incremented version when changing the record.

– The Pessimistic Offline Lock list will include items along the lines of acquiring any
lock necessary to load a piece of data---typically the exclusive read lock or the read
portion of the read/write lock---and releasing all locks when the business
transaction or session completes.

• Second, and just as important, is that these lock types most greatly limit system
concurrency.
– Making locking work is a matter of determining the best way to get your framework

to implicitly carry out the locking mechanics.

REliable, INtelligent & Scalable Systems

Implicit Lock-When to Use It

• Implicit Lock should be used in all but the simplest of applications
that have no concept of framework. The risk of a single forgotten
lock is too great.

REliable, INtelligent & Scalable Systems

Implicit Lock-Example

• Implicit Pessimistic Offline Lock (Java)
• We'll write a locking mapper that acquires a lock before attempting to find an object.
interface Mapper...
 public DomainObject find(Long id);
 public void insert(DomainObject obj);
 public void update(DomainObject obj);
 public void delete(DomainObject obj);

class LockingMapper implements Mapper...
 private Mapper impl;
 public LockingMapper(Mapper impl) { this.impl = impl; }
 public DomainObject find(Long id) {
 ExclusiveReadLockManager.INSTANCE.acquireLock(id,

AppSessionManager.getSession().getId());
 return impl.find(id);
 }
 public void insert(DomainObject obj) { impl.insert(obj); }
 public void update(DomainObject obj) { impl.update(obj); }
 public void delete(DomainObject obj) { impl.delete(obj); }

mk:@MSITStore:D:/Courses/软件体系架构/PEAA.chm::/0321127420_ch16lev1sec2.html

REliable, INtelligent & Scalable Systems

Implicit Lock-Example

• One of the nice things about decorators is that the object being wrapped
doesn't even know that it's functionality is being enhanced. Here we can wrap
the mappers in our registry:

LockingMapperRegistry implements MappingRegistry...
 private Map mappers = new HashMap();
 public void registerMapper(Class cls, Mapper mapper) {
 mappers.put(cls, new LockingMapper(mapper));
 }
 public Mapper getMapper(Class cls) {
 return (Mapper) mappers.get(cls);
 }

REliable, INtelligent & Scalable Systems

Integrate with other systems

• Requirements:
– Should be integrated with other systems

– Some of them are heterogeneous systems

• Web services:
– Access via web

– Access via SOAP

– But how to test?

REliable, INtelligent & Scalable Systems

Special Case

• A subclass that provides special behavior for particular cases.

• If it's possible for a variable to be null, you have to remember to surround it with null test code so
you'll do the right thing if a null is present. Often the right thing is same in many contexts, so you end
up writing similar code in lots of places--committing the sin of code duplication.

• Instead of returning null, or some odd value, return a Special Case that has the same interface as what
the caller expects.

REliable, INtelligent & Scalable Systems

Special Case-How It Works

• The basic idea is to create a subclass to handle the Special Case.
– Thus, if you have a customer object and you want to avoid null checks, you

make a null customer object.
– Take all of the methods for customer and override them in the Special Case to

provide some harmless behavior.
– Then, whenever you have a null, put in an instance of null customer instead.

• There's usually no reason to distinguish between different instances of
null customer, so you can often implement a Special Case with a flyweight .

• A null can mean different things.
– A null customer may mean no customer or it may mean that there's a customer

but we don't know who it is.
– Rather than just using a null customer, consider having separate Special Cases

for missing customer and unknown customer.

• A common way for a Special Case to override methods is to return another
Special Case.
– so if you ask an unknown customer for his last bill, you may well get an

unknown bill.

REliable, INtelligent & Scalable Systems

Special Case-When to Use It

• Use Special Case whenever you have multiple places in the system
that have the same behavior after a conditional check for a
particular class instance, or the same behavior after a null check.

REliable, INtelligent & Scalable Systems

Special Case-Example

• Here's a simple example of Special Case used as a null object.
• We have a regular employee.
class Employee...
 public virtual String Name {
 get {return _name;}
 set {_name = value;}
 }
 private String _name;
 public virtual Decimal GrossToDate {
 get {return calculateGrossFromPeriod(0);}
 }
 public virtual Contract Contract {
 get {return _contract;}
 }
 private Contract _contract;

REliable, INtelligent & Scalable Systems

Special Case-Example

• The features of the class could be overridden by a null employee
class NullEmployee : Employee, INull...
 public override String Name {
 get {return "Null Employee";}
 set {}
 }
 public override Decimal GrossToDate {
 get {return 0m;}
 }
 public override Contract Contract {
 get {return Contract.NULL;}
 }

• Notice that when you ask a null employee for its contract you get a

null contract back.

REliable, INtelligent & Scalable Systems

Plugin

• Links classes during configuration rather than
compilation.

• Configuration shouldn't be scattered throughout your
application, nor should it require a rebuild or
redeployment. Plugin solves both problems by
providing centralized, runtime configuration.

REliable, INtelligent & Scalable Systems

Plugin-How It Works

REliable, INtelligent & Scalable Systems

Plugin-How It Works

• A text file works quite well as the means of stating linking rules.
– The Plugin factory will simply read the text file, look for an entry

specifying the implementation of a requested interface, and return
that implementation.

• Plugin works best in a language that supports reflection because
the factory can construct implementations without compile-time
dependencies on them.
– When using reflection, the configuration file must contain mappings of

interface names to implementation class names.
– The factory can sit independently in a framework package and needn't

be changed when you add new implementations to your configuration
options.

REliable, INtelligent & Scalable Systems

Plugin-When to Use It

• Use Plugin whenever you have behaviors that require
different implementations based on runtime
environment.

REliable, INtelligent & Scalable Systems

Plugin-Example

• key, or ID, generation is a task whose implementation
might vary between deployment environments.

REliable, INtelligent & Scalable Systems

Plugin-Example

• First we'll write the IdGenerator Separated Interface as well as any needed
implementations.

interface IdGenerator...
 public Long nextId();

class OracleIdGenerator implements IdGenerator...
 public OracleIdGenerator() {
 this.sequence = Environment.getProperty("id.sequence");
 this.datasource = Environment.getProperty("id.source");
}
• In the OracleIdGenerator, nextId() select the next available number out of

the defined sequence from the defined data source.

class Counter implements IdGenerator...
 private long count = 0;
 public synchronized Long nextId() {
 return new Long(count++);
 }

mk:@MSITStore:D:/Courses/软件体系架构/PEAA.chm::/0321127420_ch18lev1sec4.html

REliable, INtelligent & Scalable Systems

Plugin-Example

• Now that we have something to construct, let's write the plugin factory that will realize the
current interface-to-implementation mappings.

class PluginFactory...
 private static Properties props = new Properties();
 static {
 try {
 props.load(PluginFactory.class.
 getResourceAsStream("/plugins.properties"));
 } catch (Exception ex) {
 throw new ExceptionInInitializerError(ex);
 }
 }

 public static Object getPlugin(Class iface) {
 String implName = props.getProperty(iface.getName());
 if (implName == null) {
 throw new RuntimeException("implementation not specified for " +
 iface.getName() + " in PluginFactory propeties.");
 }
 try {
 return Class.forName(implName).newInstance();
 } catch (Exception ex) {
 throw new RuntimeException("factory unable to construct instance of " + iface.getName());
 }
}

REliable, INtelligent & Scalable Systems

Plugin-Example

• Here's how two different configuration files, one for test and one
for production, might look:

config file test.properties...
 # test configuration
 IdGenerator=TestIdGenerator
config file prod.properties...
 # production configuration
 IdGenerator=OracleIdGenerator

• Let's go back to the IdGenerator interface and add a static

INSTANCE member that's set by a call to the Plugin factory. It
combines Plugin with the singleton pattern to provide an
extremely simple, readable call to obtain an ID.

class IdGenerator...
 public static final IdGenerator INSTANCE =
 (IdGenerator) PluginFactory.getPlugin(IdGenerator.class);

REliable, INtelligent & Scalable Systems

Plugin-Example

• We can now make that call knowing that we'll get the right ID for
the right environment.

class Customer extends DomainObject...

 private Customer(String name, Long id) {
 super(id);
 this.name = name;
 }
 public Customer create(String name) {
 Long newObjId = IdGenerator.INSTANCE.nextId();
 Customer obj = new Customer(name, newObjId);
 obj.markNew();
 return obj;
 }

REliable, INtelligent & Scalable Systems

Service Stub

• Removes dependence upon problematic services during testing.

• Enterprise systems often depend on access to third-party
services such as credit scoring, tax rate lookups, and pricing
engines.

• Feature delivery is unpredictable, and as these services are often
remote reliability and performance can suffer as well.

• Replacing the service during testing with a Service Stub that
runs locally, fast, and in memory improves your development
experience.

REliable, INtelligent & Scalable Systems

Service Stub-How It Works

• The first step is to define access to the service with a
Gateway.

– The Gateway should not be a class but rather a Separated
Interface so you can have one implementation that calls the
real service and at least one that's only a Service Stub.

• The desired implementation of the Gateway should
be loaded using a Plugin.

– The key to writing a Service Stub is that you keep it as simple
as possible--Complexity will defeat your purpose.

REliable, INtelligent & Scalable Systems

Service Stub-When to Use It

• Use Service Stub whenever you find that dependence
on a particular service is hindering your development
and testing.

• Many practitioners of Extreme Programming use the
term Mock Object, for a Service Stub. We've stuck
with Service Stub because it's been around longer.

REliable, INtelligent & Scalable Systems

Service Stub-Example

• Our application uses a tax service that deployed as a Web
service.

• The first item we'll take care of is defining a Gateway so that our
domain code isn't forced to deal with the wonders of Web
services.

– The Gateway is defined as an interface to facilitate loading of any
Service Stubs that we write. We'll use Plugin to load the correct tax
service implementation.

interface TaxService...
 public static final TaxService INSTANCE = (TaxService)

PluginFactory.getPlugin(TaxService.class);
 public TaxInfo getSalesTaxInfo(String productCode, Address addr,

Money saleAmount);

mk:@MSITStore:D:/Courses/软件体系架构/PEAA.chm::/0321127420_ch18lev1sec1.html
mk:@MSITStore:D:/Courses/软件体系架构/PEAA.chm::/0321127420_ch18lev1sec1.html
mk:@MSITStore:D:/Courses/软件体系架构/PEAA.chm::/0321127420_ch18lev1sec9.html

REliable, INtelligent & Scalable Systems

Service Stub-Example

• The simple flat rate Service Stub would look like this:
class FlatRateTaxService implements TaxService...
 private static final BigDecimal FLAT_RATE = new

BigDecimal("0.0500");
 public TaxInfo getSalesTaxInfo(String productCode, Address addr,

Money saleAmount) {
 return new TaxInfo(FLAT_RATE,
 saleAmount.multiply(FLAT_RATE));
}

REliable, INtelligent & Scalable Systems

Service Stub-Example

• Here's a Service Stub that provides tax exemptions for a
particular address and product combination:

class ExemptProductTaxService implements TaxService...
 private static final BigDecimal EXEMPT_RATE = new

BigDecimal("0.0000");
 private static final BigDecimal FLAT_RATE = new

BigDecimal("0.0500");
 private static final String EXEMPT_STATE = "IL";
 private static final String EXEMPT_PRODUCT = "12300";
 public TaxInfo getSalesTaxInfo(String productCode, Address addr,

Money saleAmount) {
 if (productCode.equals(EXEMPT_PRODUCT) &&
 addr.getStateCode().equals(EXEMPT_STATE)) {
 return new TaxInfo(EXEMPT_RATE,
 saleAmount.multiply(EXEMPT_RATE));
 } else {
 return new TaxInfo(FLAT_RATE,
 saleAmount.multiply(FLAT_RATE));
 }
 }

REliable, INtelligent & Scalable Systems

Service Stub-Example

• Now here's a more dynamic Service Stub whose methods allow a test
case to add and reset exemption combinations.

class TestTaxService implements TaxService...
 private static Set exemptions = new HashSet();
 public TaxInfo getSalesTaxInfo(String productCode, Address addr, Money

saleAmount) {
 BigDecimal rate = getRate(productCode, addr);
 return new TaxInfo(rate, saleAmount.multiply(rate));
 }
 public static void addExemption(String productCode, String stateCode) {
 exemptions.add(getExemptionKey(productCode, stateCode));
 }
 public static void reset() { exemptions.clear(); }
 private static BigDecimal getRate(String productCode, Address addr) {
 if (exemptions.contains(getExemptionKey(productCode,

addr.getStateCode())))
 { return EXEMPT_RATE; }
 else { return FLAT_RATE; }
 }

REliable, INtelligent & Scalable Systems

Service Stub-Example

• Finally, any caller to the tax service must access the service via the
Gateway. We have a charge generator here that creates standard
charges and then calls the tax service in order to create any
corresponding taxes.

class ChargeGenerator...
 public Charge[] calculateCharges(BillingSchedule schedule) {
 List charges = new ArrayList();
 Charge baseCharge = new Charge(schedule.getBillingAmount(), false);
 charges.add(baseCharge);
 TaxInfo info =

TaxService.INSTANCE.getSalesTaxInfo(schedule.getProduct(),
schedule.getAddress(), schedule.getBillingAmount());

 if (info.getStateRate().compareTo(new BigDecimal(0)) > 0) {
 Charge taxCharge = new Charge(info.getStateAmount(), true);
 charges.add(taxCharge);
 }
 return (Charge[]) charges.toArray(new Charge[charges.size()]);
}

mk:@MSITStore:D:/Courses/软件体系架构/PEAA.chm::/0321127420_ch18lev1sec1.html

REliable, INtelligent & Scalable Systems

References

• Martin Fowler’s Patterns of Enterprise Application Architecture

66

Thank You!

